Regularizing autoencoder-based matrix completion models via manifold learning Host Publication: 2018 26th European Signal Processing Conference, EUSIPCO 2018 Authors: D. Nguyen, E. Tsiligianni, R. Calderbank and N. Deligiannis Publication Date: Nov. 2018 Number of Pages: 5
Abstract: Autoencoders are popular among neural-networkbasedmatrix completion models due to their ability to retrievepotential latent factors from the partially observed matrices.Nevertheless, when training data is scarce their performance issignificantly degraded due to overfitting. In this paper, we mitigateoverfitting with a data-dependent regularization techniquethat relies on the principles of multi-task learning. Specifically,we propose an autoencoder-based matrix completion model thatperforms prediction of the unknown matrix values as a maintask, and manifold learning as an auxiliary task. The latter actsas an inductive bias, leading to solutions that generalize better.The proposed model outperforms the existing autoencoder-basedmodels designed for matrix completion, achieving high reconstructionaccuracy in well-known datasets. External Link.
|