ETRO VUB
About ETRO  |  News  |  Events  |  Vacancies  |  Contact  
Home Research Education Industry Publications About ETRO

ETRO Publications

Full Details

Conference Publication

Interpretable self-labeling semi-supervised classifier

Host Publication: Proceedings of the 2nd Workshop on Explainable Artificial Intelligence

Authors: I. Del Carmen Grau Garcia, D. Sengupta, M. M. Garcia Lorenzo and A. Nowé

Publication Date: Jul. 2018


Abstract:

Semi-supervised classification refers to a type of pattern classification problem involving both labeled and unlabeled data, where the number of labeled instances is often significantly smaller compared to the number of unlabeled ones. Although there exist several semi-supervised classifiers with high performance over different tasks, most of them are complex models that do not allow explaining the obtained outcome, thus behaving like black boxes. In this paper, we perform a critical analysis of the interpretability of state-of-the-art semisupervised classification approaches. In addition, we present a self-labeling grey-box classifier that uses a black-box to estimate the missing class labels and an interpretable white-box to make the actual predictions. The main contribution of this model relies on its transparency while also being able to outperform most state-of-the-art semisupervised classifiers.

Other Reference Styles
Other Publications

• Journal publications

IRIS • LAMI • AVSP

• Conference publications

IRIS • LAMI • AVSP

• Book publications

IRIS • LAMI • AVSP

• Reports

IRIS • LAMI • AVSP

• Laymen publications

IRIS • LAMI • AVSP

• PhD Theses

Search ETRO Publications

Author:

Keyword:  

Type:








- Contact person

- IRIS

- AVSP

- LAMI

- Contact person

- Thesis proposals

- ETRO Courses

- Contact person

- Spin-offs

- Know How

- Journals

- Conferences

- Books

- Vacancies

- News

- Events

- Press

Contact

ETRO Department

Tel: +32 2 629 29 30

©2024 • Vrije Universiteit Brussel • ETRO Dept. • Pleinlaan 2 • 1050 Brussels • Tel: +32 2 629 2930 (secretariat) • Fax: +32 2 629 2883 • WebmasterDisclaimer