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ABSTRACT
In this paper, we present a robust system for the temporal align-
ment of 2 renditions of the same speech utterance. The system
operates in 2 steps: during analysis, the timing relationships be-
tween the speech segments of the utterance that serves as a timing
reference and the corresponding speech segments in the replace-
ment utterance are measured by means of a dedicated dynamic time
warping algorithm. The obtained warping paths are then processed
and used to synthesize a high-quality speech utterance that is time-
aligned with the reference. Subjective audio-visual listening tests
performed within the context of a difficult Automatic Dialogue Re-
placement task demonstrated that the proposed system achieves a
significant improvement compared to the industry-standard bench-
mark, both in terms of achieved lip-synchronization accuracy as
well as in overall sound quality of the synthesized utterances.

1. INTRODUCTION

A system for the temporal alignment of speech utterances modifies
the timing structure of a first utterance (replacement, dub) in such a
way as to synchronize it with a second utterance (reference, guide),
which has the same textual content and has been produced by the
same or by a different speaker. In general, such a system achieves
the synchronization in 2 steps. First, the time correspondence is
measured between the matching phonemes in both utterances. The
resulting timing relationship describes the varying amounts of time
stretching and compression necessary to bring the time axis of the
replacement into optimal alignment with that of the reference. In a
second step, the relative timing differences between the utterances
are cancelled out by warping the time axis of the replacement in
accordance with the measured timing relationship.

Although we can enumerate many possible uses for time align-
ment systems, our special attention in this paper goes to Automatic
Dialogue Replacement (ADR), a well-known post-production tech-
nique in the audio-for-video industries. During the production of
film soundtracks, dialogues are frequently re-recorded in a studio
and used to replace the original ones recorded on the set. Very of-
ten, this is necessary because of the poor quality of the original
recordings that might for example be corrupted by some kind of
background noise that is difficult to control. As another example it
is sometimes argued that an actor can produce a markedly improved
spoken performance in a studio in comparison to the one produced
on the set, which is usually very chaotic and makes it difficult to
capture the true mood of a scene. In either case, straightforward
replacement of the original recordings by the studio dialogues in-
troduces a lot of mismatches between the lip and mouth movements
in the picture and the actual timing and duration of the individual
phonemes in the replacement speech. ADR is the most widespread
technique used for the (indirect) compensation of such audio-visual
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“lip-synch” errors. It operates as follows: each actor involved in
a particular scene attends a special dubbing session, during which
the appropriate pictures are projected onto a screen in front of him,
while replaying the original recordings over headphones. The ac-
tor then revoices the original dialogues, ensuring not only that his
replacement speech precisely synchronizes with the on-screen lip
movements, but also that the nuances of his performance match the
original. Post-synchronizing dialogue is generally considered very
difficult because most actors have a lot of difficulties to maintain
synchrony while speaking. In addition, its repetitive nature makes it
also very dull and time-consuming as the actor often needs to rede-
liver his lines until director and dialogue editor have compromised
between the desired level of performance and timing. In the past,
a few systems have been developed that allow automatically time-
aligning the studio dialogues with the original recordings. These
systems not only save time and money, they also release the actors
from their technical preoccupation of speaking in synchrony with a
picture soundtrack and thus allow them to fully concentrate on their
primary task of acting and producing great performances.

This paper is organized as follows: section 2 reviews the previ-
ous work on automatic temporal alignment and the observed short-
comings in the approaches followed. In section 3 we motivate
and discuss the proposed “split time warping” technique, which
we evaluate in section 4 by comparing its performance against the
industry-standard benchmark. Also are discussed the employed
evaluation methodology and database. Finally, in section 5, we dis-
cuss the results and conclude the paper.

2. RELATED WORK

Over the last 4 decades, a considerable amount of research has been
carried out on the development of techniques for the automatic time
registration of corresponding events in 2 renditions of a same ut-
terance (see for example [1] and related references therein). On the
contrary and to the best of the authors’ knowledge, very little efforts
have been made when it comes down to applying the registered tim-
ing relationships for speech synthesis purposes.

The first attempts were made in the eighties, primarily in
the early original work of Bloom [2, 3], who developed a digi-
tal audio signal processor named WordFit for the automatic post-
synchronization of revoiced studio recordings with the correspond-
ing recordings made on the film set. Although this system was de-
signed to work with a variety of audio signals and not only with
speech, it was reported that no single set of parameters could be
found for which the system or its successor, VocALign PRO, would
work under all circumstances [4, 5]. One very important and prac-
tical problem that arises in time-aligning sentence long speech ut-
terances is the presence of long inter-word gaps, possibly between
different words and/or of different durations, in one or both utter-
ances. During the development of WordFit, Bloom implemented a
modified version of the ZIP algorithm [6]. Although this algorithm
could solve part of the problems as explained in [2], it is gener-
ally not capable of correctly inserting or rejecting pauses into or
from the replacement track. Another disadvantage of ZIP is that it
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belongs just like UELM [7] and MATCH [8] to a class of dynamic
time warping (DTW) algorithms that estimate the globally optimum
path by tracking a locally optimum path using a local search win-
dow. Although the window steering and partial trace back proce-
dures ensure the amount of computation and storage can be kept
to modest levels, such algorithms are susceptible to tracking fail-
ures (see for example [9]), especially when large timing differences
occur in the sentence pairs.

Later on, Verhelst and Borger studied the alignment of speech
utterances in the context of prosody transplantation [10]. Such sys-
tems can be used to interchange prosodic features, such as timing,
pitch and timbre among different renditions of a same utterance.
It was concluded that in order to make prosodic transplantations
widely applicable, further work had to be done to improve their ro-
bustness: informal experiments revealed that, with utterance pairs
that are not acoustically and phonetically sufficiently close to each
other, local distortions could be regularly perceived, even when only
timing is transplanted [11]. Very often, these distortions could be
traced to some event in the timing relationship, but could not al-
ways be considered to be due to an error in this relationship, nor to
the system that was used to perform the time scaling. In general,
it was concluded that the perceived distortions could be attributed
to 3 different types of acoustic-phonetic differences, which are de-
scribed in detail in [12]. In [11], Verhelst built a basic system for
the automatic post-synchronization of speech utterances based on
standard DTW and WSOLA. The system proved to be quite robust
to significant timing differences such as those that can for example
be observed between speech utterances in which silent pauses occur
between different words, but it was also noted that the time-scaled
results very often suffered from many audible distortions. The ma-
jor part of these distortions could be readily identified with the short
abrupt transitions in the time warping path and it was shown that
they could be straightforwardly smoothed out with the help of a
graphical warping path editor that was developed for that purpose
[12]. Although it was concluded that such an editor could form an
effective tool for the semi-automatic correction of lip-synch errors,
no objective criterion was formulated that enabled the consistent
and automatic production of high-quality natural sounding results.

Finally, in [13], Resch and Kleijn adopt the approach of Ver-
helst, but they classify the reference and replacement tracks into
speech and silence segments, the information of which is used to
bias the warping path towards preferred directions in different situa-
tions. The major problem with this approach is that it applies the DP
principle to a situation that does not justify its use [14]. Therefore,
as is the case with ZIP, the alignment can get stuck in local min-
ima, causing significant misalignments. Such misalignments were
also verified from extensive experiments using our implementation
of the algorithm, and in many cases the results were found to be
inferior to those of VocALign PRO.

3. SPLIT DYNAMIC TIME WARPING

Although the several algorithms proposed in literature have been
thoughtfully motivated, they all have to contend with specific draw-
backs in different situations, which stem from a somewhat contra-
dictory requirement that is imposed on the warping function cur-
vature: at some parts this function should allow very steep or flat
gradients to account for the possible different location and/or dura-
tion of pauses, while at other positions it should be smooth enough
to avoid unnatural sounding artefacts in the time-aligned results. In
order to meet this dual requirement in a convenient manner, the pro-
posed system uses a DTW-based timing analysis approach, which
splits up the calculation of the final warping path in 2 steps (the de-
tails of the WSOLA-based synthesis are identical to those described
in [11] and will therefore not be discussed in this paper).

3.1 Identification of corresponding speech segments

The first step in the timing analysis is motivated by the conclusion
that the main concern for the greater part of time alignment applica-
tions, and for ADR in particular, is to know the temporal variations

Figure 1: Illustration of split time warping (fs = 16kHz throughout
the figures).

that occur between the corresponding speech segments1 in the 2
waveforms. Furthermore, it is well-known that the details of a DTW
path can be quite arbitrary during the alignment of non-speech seg-
ments and can therefore give rise to tracking errors [6]. Hence, it
seems reasonable to first segment the 2 waveforms into intervals
containing speech and intervals containing non-speech before ap-
plying a specific DTW algorithm. Assuming both waveforms have
been precisely segmented (more details on the segmentation are
given in section 4.3 and [15]), the main idea behind the proposed
method is that for each of theRreference speech segments delimited
by time markers(αr ,βr) with 1≤ r ≤R, there must correspond a re-
placement speech segment(λr−1,λr). Since in general the number
and/or location of the non-speech segments in the 2 waveforms is
different, automatic identification of the matching speech segments
is not straightforward. Experiments in [5] demonstrated that the
corresponding pairs can be identified by splitting the replacement
speech waveform in which all non-speech segments were removed
in a preprocessing step (“reduced replacement”) at time instants2

λr =

∫ αr+1

βr
g(x)τ(x)dx

∫ αr+1

βr
g(x)dx

r = 1. . .R−1 (1)

whereλ0 = 0 andλR equals the duration of the reduced replacement.
In this expression,τ(x) represents the linearly interpolated DTW
path between the reference (along the x-axis) and the reduced re-
placement using the symmetric Sakoe-Chiba local constraint (with
zero slope constraint condition) [16]. Furthermore,g(x) is a Gaus-
sian weighting function symmetrically positioned over[βr ,αr+1]
that is used to bias the split towards the speech segment boundaries.

1Without loss of generality, we defined a “speech segment” within the
context of ADR as each sequence of phonemes that is not interrupted by a
breathing pause, silence or background noise (“non-speechsegment”).

2Preferably, also the non-speech segments in the beginning and at the
end of the reference are removed in a preprocessing step.
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Figure 2: Smoothing process in detail (2L=500ms).

Figure 1 illustrates the split time warping concept on a replace-
ment and reference waveform with 1 and 2 non-speech segments,
respectively. Whereas the lengths of the horizontal stretches ap-
proximately cover the durations of the non-speech segments in the
reference, their position along the y-axis indicates where to split the
reduced replacement such that the corresponding speech segments
can be identified.

3.2 Smoothing and postprocessing of the sub warping paths

In a second step, we recalculate the timing relationship for each pair
of matching speech segments using the same DTW algorithm as in
the previous step. Since the resulting “sub warping paths”τr (x) can
be expected to be reasonably close to the diagonal linear path, re-
compution was sped up using a global constraint in the form of a
small Sakoe-Chiba band [16]. In addition, an Itakura parallelogram
[17], defined by lines of slope 1/2 and 2 was applied to ensure the
correct alignment of the speech/non-speech segment boundaries.

Smoothing: as mentioned in section 2, straightforward use of
the sub warping paths for overlap-and-add time-scale modification
of the replacement speech would inevitably lead to distorted re-
sults, mainly due to the short abrupt portions that correspond to
the unrealistic time-scaling factors of 0 or∞. As we suggested in
[11], we smoothed the sub warping paths using different techniques
such as piece-wise linear smoothing, DTW variants with especially
crafted local constraints (as in [18]), and more generative non-linear
smoothing techniques such as LOWESS [19]. From the techniques
studied, LOWESS smoothing using a zero order degree polynomial
proved both very effective as well as computationally efficient. In
that case, the r-th smoothed sub warping pathτ̃r (x) is obtained from
the centrally weighted moving average represented by expression 2.

τ̃r (x) =

∫ x+L
x−L w(u−x)τr(u)du

∫ L
−L w(u)du

r = 1. . .R (2)

Figure 2 illustrates the smoothing process in detail: for the calcula-
tion of the smoothed sub warping paths, we followed the traditional
LOWESS approach in using a tricube window

w(x) =

[
1−

(
|x|
L

)3
]3

|x| ≤ L (3)

in which the application-dependent window length 2L largely de-
fines the trade-off between achieved timing accuracy (or lip-synch
accuracy in the case of ADR) and perceived voice quality.

Postprocessing: although the smoothing process constrains the
first and higher-order derivatives to more realistic values and leads
to more smoothly sounding results, occasional peaks in these func-
tions can still be responsible for unnatural sounding speech rates,
accelerations and/or decelerations, and should therefore be further

Figure 3: Illustration of the postprocessing stage (α=1.5).

constrained. One possible way is to constrain the first derivative of
the smoothed sub warping paths in the following manner:

T1,r =
GTS−1

r

αr
≤

dτ̃r (x)
dx

≤ αr ·GTS−1
r = T2,r (4)

In this expression,GTSr represents the r-th global time scaling fac-
tor, which is defined as the ratio of durations of respectively the r-th
reference and replacement speech segments that are being aligned,
andαr is an application-dependent constant in the range 1.1. . .1.5.
Furthermore, threshold valuesT1,r andT2,r are defined as the lower
and upper bound of inequality 4, respectively. From a physical point
of view, expression 4 implies that the instantaneous speech rate
of the replacement speech after time-scale modification (SRx(t)) is
constrained by that before time-scale modification (SRy(t)) in ac-
cordance with

T1,r ·SRy(t)≤ SRx(t)≤ T2,r ·SRy(t) (5)

Figure 3 illustrates the correction procedure that was applied to
achieve natural sounding results. The small bend in the smoothed
(sub warping) path in the upper panel of figure 3 would generate
an unnatural sounding speech deceleration followed by an unnatu-
ral sounding speech acceleration. This is correctly reflected in the
lower panel by the sharp negative and positive peak in the function
that represents the first derivative of the smoothed path. Applying
a threshold yields a first estimate of the time intervals where this
function should be limited in range (small square wave). Merging
of the corresponding adjacent time intervals eventually identifies the
portions in the smoothed path that require further processing (large
square wave). Allowing each of these portions to be extended for-
wards and backwards in time, the applied correction procedure re-
places the smoothed warping path by the shortest possible straight
line, the slope of which satisfies expression (5).
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4. EVALUATION OF SYSTEM PERFORMANCE

4.1 Evaluation methodology

The objective evaluation of the overall timing accuracy of a given
time alignment system is a difficult task, which is mainly due to the
inherent subjectiveness that exists in identifying the corresponding
phoneme boundaries in 2 renditions of a same speech utterance [1].
In automatic phoneme alignment for example, evaluation is most
often reported in terms of what percentage of a set of automatically
generated phoneme boundaries are within a given time threshold
of a known set of manually generated boundaries (there is a gen-
eral consensus that the latter are the most accurate that can be ob-
tained). At first glance, this strategy could be readily applied to our
problem, for example by manually labeling the time-aligned results
and the corresponding reference samples and relating the 2 series
of time markers to estimate the overall timing error. However, this
approach would only be acceptable if the difference between the 2
sets of time markers can be considered greater than the difference
between the individual sets of manually generated time markers and
the unknown correct time markers, a condition which is usually not
met since our time-aligned results are generally well aligned with
the reference samples. Furthermore, with regard to the objective
evaluation of the overall speech quality of the time-aligned results,
“full-reference” evaluation methods such as PESQ are not appropri-
ate in this situation since they apply a temporal alignment procedure
for comparison of the “signal under test” (time-scaled result) with
the undistorted (dub) signal [20]. Because objective evaluation for
time synchronization is difficult, we evaluated the proposed system
within the context of ADR by means of a subjective audio-visual lis-
tening test. Although the proprietary nature of the industry-standard
VocALign PRO (V4.0) hampers insight in the algorithmic details of
the alignment process (the output waveforms are the only informa-
tion available for evaluation), it was selected as a baseline for com-
parison, since it is world-wide considered the benchmark system for
automatic time synchronization and ADR [21].

4.2 Database recordings

With a view to the experiment in section 4.3, we recorded an audio-
visual corpus, comprising 80 different samples, produced by 2 male
and 6 female native Dutch speakers. The data from this corpus was
extracted from 2 sets of recording sessions. In a first series, we in-
vited each time 2 speakers for a 30 minute table talk. From each
of these conversations, 5 samples were extracted for each person.
In doing so, care was taken the selected samples were sufficiently
long such that they would cover a wide range of speaking rates as
well as pauses of different kinds and durations. In a second se-
ries, the same speakers were asked to mimic the selected parts of
their conversations by revoicing the literally transcribed lines from
a large screen at a pace they felt comfortable with. In contrast to the
traditional approach in ADR, we did not require the speakers to de-
liver performances with near-perfect lip-synch accuracy. As a con-
sequence, we can generally observe substantial timing differences
between the corresponding sample pairs, which therefore consti-
tute a suitable test database to research the alignment capabilities
of the proposed algorithm and in particular its robustness against
the acoustic-phonetic differences described in [12]. For both the
spontaneous and revoiced speech samples, table 1 shows the av-
erage overall duration (OD), average speech and non-speech rate
(SR resp.NSR) and average duration of short (DS), medium (DM )
and long (DL ) non-speech segments. We remark that both clas-
sification as well as observed distribution of the short (< 200ms),
medium (> 200ms,< 1s) and long (> 1s) non-speech segments
were in agreement with [22].

4.3 Experiment

A complete set of 80 alignment runs was made by syn-
chronizing all dubbed speech samples with the correspond-
ing spontaneously spoken samples using both the proposed
and baseline system (some examples can be downloaded from
http://www.etro.vub.ac.be/research/DSSP/demo).

spontaneous speech revoiced speech
OD [s] 20.3±4.4 25.0±6.2

SR [syll/s] 5.41±0.90 4.76±0.92
NSR [1/s] 0.238±0.070 0.374±0.083
DS [ms] 155±26 151±29
DM [ms] 499±189 494±180
DL [ms] 1255±258 1193±205

Table 1: Major database statistics.

Due to its proprietary nature, users only have limited control in
the way the time-aligned results are produced with VocALign PRO.
First, one has to select a type of alignment mode (“basic” or “ad-
vanced”), each one of which has 5 possible different settings that
control the internal parameters of the applied alignment algorithm.
In contrast to the basic mode, which only allows time scaling ra-
tios in the range 1/2. . .2, the advanced mode allows much larger
amounts of time compression and expansion to occur. To make a
proper choice among the 2 modes and their respective settings, the
user can resort to a manual, which describes for each combination
the amounts of time compression/expansion that can be provided,
the nature of the input waveforms for which it is applicable and the
expected output sound quality [21]. For the alignment of our record-
ings, we found that the “advanced” mode with the “high flexibility”
setting produced far better results than the other combinations: it
was therefore chosen as final setting for all alignments. In addition,
the alignment process canoptionallybe further controlled by target-
ing the alignment at specified pairs of “synch points” in the 2 wave-
forms. However, it must be remarked that such points are always
interpreted assuggestedpoints, which the alignment algorithm will
try to match, and which can therefore be ignored completely. Al-
though we tried to improve the results for the “difficult” alignment
pairs by manually identifying the corresponding speech/non-speech
transitions in the 2 waveforms, in most of the cases these pairs of
anchor points were ignored or gave rise to the error message “no
warping path could be fit through one or more of the waypoints”.

For the alignment of our recordings by means of the pro-
posed system, we first segmented the samples into speech and non-
speech intervals. In the first instance, this was accomplished au-
tomatically. However, because of the importance of an accurate
speech/non-speech discrimination, we further manually inspected
the speech/non-speech transitions and, where necessary, corrected
them in a very efficient interactive way by means of a GUI specifi-
cally designed for ADR [15]: at each time this tool allows to zoom
into and slide through the waveforms, select and audition specific
portions, and make corrections by dragging the speech/non-speech
boundaries to the left or the right. After segmentation, the data were
processed according to the details described in section 3.

4.4 Subjective audio-visual listening test

The time-aligned samples obtained with the 2 synchronization sys-
tems were re-assembled with the corresponding video fragments
from the conversation sessions and subsequently randomly arranged
and presented in an equal amount of triplets (A,B,C) and (A,C,B), in
which A denotes an original video sample, and where B and C rep-
resent this same fragment but with the audio replaced by the time-
aligned result obtained with the baseline and proposed system, re-
spectively. For each of the 40 triplets, we first asked 8 listeners to
view fragment A and then rate both the perceived audio-visual lip-
synch accuracy as well as the overall sound quality (naturalness &
intelligibility) of B and C by assigning scores to their opinions, ac-
cording to the ITU-R 5-point degradation scale [23]. These scores
represent a number in the range 1 to 5, which provides a numerical
indication of the quality of the considered audio(-visual) feature.

4.5 Results

Table 2 shows the arithmetic means evaluated from the opinion
scores for each and across all speakers (DMOS) (scores were first
averaged across all test listeners, and then over the different video
samples), as well as the sample standard deviation (s), standard er-
ror of the mean (SEM) and the 95% confidence interval (95%CI ).
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lip-synch accuracy speech quality
Baseline Proposed Baseline Proposed

S1 2.45 4.10 1.86 3.35
S2 2.47 3.84 1.99 3.16
S3 3.14 3.61 2.54 3.66
S4 2.82 3.99 2.43 3.71
S5 3.05 3.77 2.52 3.49
S6 2.29 3.60 2.12 3.29
S7 2.19 4.10 2.35 3.88
S8 3.04 4.05 2.86 3.79

DMOS 2.68 3.88 2.33 3.54
s 0.85 0.38 0.51 0.39

SEM 0.13 0.06 0.08 0.06
95%CI 2.41...2.95 3.76...4.00 2.17...2.49 3.41...3.66

∆ 1.2 1.21
d 1.81 2.64

RI(%) 44.8 51.9

Table 2: Major statistical analysis results for the listening test.

In addition are given the raw (∆) and standardized differences (un-
biased Cohen’sd effect size) in overall mean DMOS scores, and
also the relative improvement of the proposed system over the base-
line system (RI ). Since the distribution of the assigned scores was
far from Gaussian, we used the Wilcoxon matched-pairs signed-
ranks test with a threshold significance levelα = 0.05 to prove the
statistical significance of the observed differences between the mean
DMOS scores of the baseline and proposed system for both features
studied. We remark that the computed p-values in both paired tests
were smaller than 0.0001: this is mainly explained from the ob-
servation that the listeners preferred the baseline system over the
proposed system in only 6.25% (lip-synch accuracy) and 4.37%
(speech quality) of the cases. For the sake of completeness, we
report that no difference could be perceived in 18.12% and 11.56%
of the cases, respectively.

5. CONCLUSION

From the results, we can conclude that, both for the samples that
were processed with the proposed as with the baseline system,
audio-visual lip-synch errors could still be observed at some points.
However, while the latter were on average perceived as in-between
“disturbing” and just “slightly disturbing”, the former were per-
ceived as “not disturbing or annoying”. With regard to the qual-
ity of processed speech samples, similar conclusions can be drawn,
although the overall DMOS scores are somewhat smaller. Further-
more, we can see that the non-zero differences in DMOS scores as
well as their variabilities are quite pronounced: this is chiefly ex-
plained from the difficulties that were experienced in aligning the
database samples by means of the baseline system. For the major
part of the sample pairs, the timing structure discrepancies are quite
large due to their relative differences in speech rates and number,
duration and nature of pauses used. It was observed that for such
pairs, the baseline system regularly produced unacceptable results,
which could not be further corrected, neither by selecting a different
alignment algorithm and/or setting, nor by manually placing corre-
sponding “synch points” in the 2 waveforms.

In summary, we can conclude that the proposed system has
demonstrated an overall relative improvement in DMOS score of
44.8% (lip-synch accuracy) and 51.9% (speech quality) over the
baseline system when it is used for the temporal alignment of ut-
terances in which large structural timing differences occur, such as
those between spontaneous and dubbed speech.
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