|
Phased searching with NEAT in a time-scaled framework: Experiments on a computer-aided detection system for lung nodules This publication appears in: Artificial Intelligence in Medicine Authors: M. Yen Ling TAN, R. Deklerck, J. Cornelis and B. Jansen Volume: 59 Issue: 3 Pages: 157-167 Publication Date: Aug. 2013
Abstract: Objective
In the field of computer-aided detection (CAD) systems for lung nodules in computed tomography (CT) scans, many image features are presented and many artificial neural network (ANN) classifiers with various structural topologies are analyzed frequently, the classifier topologies are selected by trial-and-error experiments. To avoid these trial and error approaches, we present a novel classifier that evolves ANNs using genetic algorithms, called "Phased Searching with NEAT in a Time or Generation-Scaled Framework", integrating feature selection with the classification task.
Methods and materials
We analyzed our method's performance on 360 CT scans from the public Lung Image Database Consortium database. We compare our method's performance with other more-established classifiers, namely regular NEAT, Feature-Deselective NEAT (FD-NEAT), fixed-topology ANNs, and support vector machines (SVMs) using ten-fold cross-validation experiments of all 360 scans.
Results
The results show that the proposed "Phased Searching" method performs better and faster than regular NEAT, better than FD-NEAT, and achieves sensitivities at 3 and 4 false positives (FP) per scan that are comparable with the fixed-topology ANN and SVM classifiers, but with fewer input features. It achieves a detection sensitivity of 83.0 � 9.7% with an average of 4 FP/scan, for nodules with a diameter greater than or equal to 3 mm. It also evolves networks with shorter evolution times and with lower complexities than regular NEAT (p = 0.026 and p <0.001, respectively). Analysis on the average and best network complexities evolved by regular NEAT and by our approach shows that our approach searches for good solutions in lower dimensional search spaces, and evolves networks without superfluous structure.
Conclusions
We have presented a novel approach that combines feature selection with the evolution of ANN topology and weights. Compared with the original threshold-based Phased Searching method of Green, our method requires fewer parameters and converges to the optimal network complexity required for the classification task at hand. The results of the ten-fold cross-validation experiments also show that our proposed CAD system for lung nodule detection performs well with respect to other methods in the literature External Link.
|
|